Issue 10, 2016

Rapid composition screening for perovskite photovoltaics via concurrently pumped ultrasonic spray coating

Abstract

Transitioning perovskite photovoltaics from the rapid progress in lab-scale devices to industrially viable large area modules is a key challenge for the economic breakthrough of the technology. In this work, we demonstrate ultrasonic spray coating as a scalable and versatile linear deposition technique for high efficiency perovskite photovoltaics. We show the versatility of concurrently pumped ultrasonic spray coating by rapidly and precisely optimizing precursor ratios based on PbCl2, Pb(CH3CO2)2·3H2O, PbBr2, CH3NH3Br, and CH3NH3I to achieve highly crystalline and pinhole-free layers. Initial power conversion efficiencies of 15.7% for small scale devices and 11.7% for 3.8 cm2 modules were achieved with current–voltage sweeps and tracked to 13.4% for devices and 10.4% for modules under continuous illumination and bias at the maximum power point. Process versatility is further demonstrated with the in situ bandgap control in CH3NH3PbIXBr3−X layers.

Graphical abstract: Rapid composition screening for perovskite photovoltaics via concurrently pumped ultrasonic spray coating

Supplementary files

Article information

Article type
Paper
Submitted
25 Jan 2016
Accepted
04 Feb 2016
First published
04 Feb 2016

J. Mater. Chem. A, 2016,4, 3792-3797

Rapid composition screening for perovskite photovoltaics via concurrently pumped ultrasonic spray coating

J. G. Tait, S. Manghooli, W. Qiu, L. Rakocevic, L. Kootstra, M. Jaysankar, C. A. Masse de la Huerta, U. W. Paetzold, R. Gehlhaar, D. Cheyns, P. Heremans and J. Poortmans, J. Mater. Chem. A, 2016, 4, 3792 DOI: 10.1039/C6TA00739B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements