Issue 25, 2016

An effective method for the synthesis of yolk–shell magnetic mesoporous carbon-surface molecularly imprinted microspheres

Abstract

This study aims to immobilise molecularly imprinted polymers (MIPs) on the surface of yolk–shell magnetic mesoporous carbon (Fe3O4@void@C) spheres for phthalate ester (PAE) recognition through an effective route. To link MIPs to Fe3O4@void@C spheres, carboxyl-modified yolk–shell magnetic mesoporous carbon (Fe3O4@void@C–COOH) was synthesised by first oxidising Fe3O4@void@C with H2O2, and MIPs were subsequently grafted on the surface of Fe3O4@void@C–COOH by a surface polymerisation method with diisononyl phthalate (DINP), methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) as template molecule, functional monomer and cross-linker, respectively. The structure and morphology of the synthesised materials were characterised by XRD, TEM, SEM, FT-IR, N2 sorption and magnetic susceptibility measurements. The synthesis conditions for the formation of Fe3O4@void@C–COOH were systematically investigated. It was observed that the chemical modification of Fe3O4@void@C is highly influenced by the type of oxidant, the concentration of H2O2, oxidation temperature and time. The adsorption isotherm and kinetics of Fe3O4@void@C-MIPs showed that Fe3O4@void@C-MIPs possessed good recognition, fast adsorption rates (approximately 20 min to reach equilibrium) and high adsorption capacities (569.2 mg g−1) toward PAEs, which were ascribed to their uniformity and monodispersity. In addition, Fe3O4@void@C-MIPs exhibited excellent reusability for the adsorption of PAEs over six adsorption–desorption cycles.

Graphical abstract: An effective method for the synthesis of yolk–shell magnetic mesoporous carbon-surface molecularly imprinted microspheres

Supplementary files

Article information

Article type
Paper
Submitted
29 Jan 2016
Accepted
26 Apr 2016
First published
01 Jun 2016

J. Mater. Chem. A, 2016,4, 9807-9815

An effective method for the synthesis of yolk–shell magnetic mesoporous carbon-surface molecularly imprinted microspheres

R. Yang, Y. Liu, X. Yan, S. Liu and H. Zheng, J. Mater. Chem. A, 2016, 4, 9807 DOI: 10.1039/C6TA00889E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements