Issue 19, 2016

Surface defect chemistry of Y-substituted and hydrated BaZrO3 with subsurface space-charge regions

Abstract

First-principles calculations were utilized to elucidate the complete defect equilibria of surfaces of proton conducting BaZrO3, encompassing charged species adsorbed to the surface, defects in the surface layer as well as in the subsurface space-charge region and bulk. Defect calculations were performed for the BaZrO3 (0 0 1) surface with focus on protons, oxygen vacancies and Y-acceptor dopants as well as adsorbed hydroxide and oxide adions. Protons were found to exhibit a particularly strong tendency to segregate to the surface with a segregation energy of −1.3 eV. While the concentration of negatively charged Y-acceptors and hydroxide species on the outer surface can be quite high, they do not fully charge compensate the protons, yielding a net positive charge of the surface. The resulting surface potential can exceed 1 V, resulting in significant depletion of charge carriers in the subsurface space-charge region. Moreover, the results are discussed in relation to surface adsorption of water, and computational approaches for treating charged point defects in periodic slab cells are evaluated with respect to symmetry and charge compensation.

Graphical abstract: Surface defect chemistry of Y-substituted and hydrated BaZrO3 with subsurface space-charge regions

Article information

Article type
Paper
Submitted
10 Mar 2016
Accepted
17 Apr 2016
First published
26 Apr 2016

J. Mater. Chem. A, 2016,4, 7437-7444

Surface defect chemistry of Y-substituted and hydrated BaZrO3 with subsurface space-charge regions

J. M. Polfus, T. S. Bjørheim, T. Norby and R. Bredesen, J. Mater. Chem. A, 2016, 4, 7437 DOI: 10.1039/C6TA02067D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements