Issue 25, 2016

Enhancement of ion dynamics in organic ionic plastic crystal/PVDF composite electrolytes prepared by co-electrospinning

Abstract

Electrospun fibers are widely used in composite material design and fabrication due to their high aspect ratio, high surface area and favorable mechanical properties. In this report, novel organic ionic plastic crystal (OIPC) modified poly(vinylidene difluoride) (PVDF) composite fiber membranes were prepared by electrospinning. These composite materials are of interest for application as solid electrolytes in devices including lithium and sodium batteries. The influence of the OIPC, N-ethyl-N-methylpyrrolidinium tetrafluoroborate [C2mpyr][BF4], on the morphology and phase behavior of the composite fibers was investigated by scanning electron microscopy and Fourier transform infrared spectroscopy. Compared with pure electrospun PVDF fibers, which have an electroactive β phase and a small amount of non-polar α phase, the ion-dipole interaction between OIPC and the polymer in the co-electrospun composite system can reduce the non-polar α phase PVDF, resulting in almost entirely electroactive β phase PVDF. Differential scanning calorimetry shows that the ion-dipole interaction between the OIPC and PVDF can also interrupt the crystalline structure of the OIPC. Solid state NMR analysis also reveals different molecular dynamics of the [C2mpyr][BF4] in co-electrospun fibers compared with pure OIPC. Thus, electrospun [C2mpyr][BF4]/PVDF composite fibers that combine both increased ionic conductivity and almost pure β phase PVDF are demonstrated.

Graphical abstract: Enhancement of ion dynamics in organic ionic plastic crystal/PVDF composite electrolytes prepared by co-electrospinning

Supplementary files

Article information

Article type
Paper
Submitted
06 Apr 2016
Accepted
03 Jun 2016
First published
03 Jun 2016

J. Mater. Chem. A, 2016,4, 9873-9880

Enhancement of ion dynamics in organic ionic plastic crystal/PVDF composite electrolytes prepared by co-electrospinning

X. Wang, H. Zhu, G. W. Greene, J. Li, N. Iranipour, C. Garnier, J. Fang, M. Armand, M. Forsyth, J. M. Pringle and P. C. Howlett, J. Mater. Chem. A, 2016, 4, 9873 DOI: 10.1039/C6TA02817A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements