Highly stable hollow bifunctional cobalt sulfides for flexible supercapacitors and hydrogen evolution†
Abstract
Hollow structures of NiAs-type cobalt sulfide have been synthesized by a facile hydrothermal method. These hollow structured cobalt sulfides exhibit excellent electrochemical properties for supercapacitor applications (867 F g−1) and respectable hydrogen evolution activity. The symmetrical supercapacitor device fabricated using cobalt sulfide nanostructures showed an areal capacitance of 260 mF cm−2 with good flexibility and high temperature stability. The specific capacitance of the supercapacitor is enhanced over 150%, when the temperature is increased from 10 to 70 °C.