Issue 37, 2016

Molybdenum-supported amorphous MoS3 catalyst for efficient hydrogen evolution in solar-water-splitting devices

Abstract

We report molybdenum (Mo) metal-supported amorphous molybdenum sulfide (a-MoS3) catalysts with a porous and nanostructure nature, which exhibit excellent catalytic activity for the hydrogen evolution reaction (HER) in wired solar-water-splitting devices. Mo-supported a-MoS3 catalysts were prepared by wet chemically synthesizing a-MoS3 nanoparticles at room-temperature and then loading with Earth-abundant and scalable Mo metals sputtered at low temperature (100 °C). Electrochemical studies and applications in wired photoelectrochemical/photovoltaic (PEC–PV) solar-water-splitting devices reveal that the HER performance of wired PEC–PV solar-water-splitting devices can be efficiently enhanced with the proposed highly conductive Mo-supported a-MoS3 catalysts by enlarging the electrochemically active areas, accelerating the electron transport to active sites, and improving the charge transfer at the catalysts/electrolyte interfaces. The low-temperature preparation of highly active Mo-supported a-MoS3 catalysts paves the way to integrating them into various high-performance PV devices to develop highly efficient, scalable, low-cost, and monolithic PEC–PV solar-water-splitting devices.

Graphical abstract: Molybdenum-supported amorphous MoS3 catalyst for efficient hydrogen evolution in solar-water-splitting devices

Supplementary files

Article information

Article type
Paper
Submitted
07 Jun 2016
Accepted
18 Aug 2016
First published
19 Aug 2016

J. Mater. Chem. A, 2016,4, 14204-14212

Molybdenum-supported amorphous MoS3 catalyst for efficient hydrogen evolution in solar-water-splitting devices

B. Liu, Z. Jin, L. Bai, J. Liang, Q. Zhang, N. Wang, C. Liu, C. Wei, Y. Zhao and X. Zhang, J. Mater. Chem. A, 2016, 4, 14204 DOI: 10.1039/C6TA04789K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements