Issue 45, 2016

Design of a novel fuel cell-Fenton system: a smart approach to zero energy depollution

Abstract

A model azo dye pollutant, Acid Orange 7 (AO7), was removed efficiently from an aqueous medium by a smart eco-friendly Fuel Cell-Fenton (FC-Fenton) system without any external power supply. In this approach, AO7 was degraded by an electro-Fenton process at a designed cathode (Carbon Felt (CF)/porous Carbon (pC)) supplied by direct clean electrical energy from abiotic glucose oxidation at a CF/gold anode (CF@Au). The highly active cathode was fabricated by an attractive route combining Atomic Layer Deposition (ALD) of ZnO on commercial carbon felts (CFs) followed by subsequent solvothermal conversion of the metal oxide to a metal organic framework (here ZIF-8). The as-prepared composite material was further calcined at high temperature under a controlled atmosphere. A pC-based support with high specific surface area and nitrogen as a dopant was thus obtained, enhancing both conductivity and electrocatalytic properties toward H2O2 production from oxygen reduction. Degradation kinetics of AO7 (0.1 mM initial concentration) at the CF@pC cathode was monitored by UV-vis spectrophotometry and High-Performance Liquid Chromatography (HPLC) to prove the efficiency of the composite material for the degradation of such a bio-refractory model molecule. Benefitting from the H2O2 production rate (9.2 mg L−1 h−1) by the pC layer, AO7 (35.0 mg L−1) was degraded by the electro-Fenton process in acidic medium (pH = 3) with removal efficiency reaching 90% in 10 h. The durability of the system was extended for more than 2 months with an average power output of 170 mW m−2, confirming this abiotic FC-Fenton system as a promising, green, future technology for both environmental and energy-related areas, including membrane-coupled reactor systems.

Graphical abstract: Design of a novel fuel cell-Fenton system: a smart approach to zero energy depollution

Supplementary files

Article information

Article type
Paper
Submitted
29 Jun 2016
Accepted
12 Sep 2016
First published
12 Sep 2016

J. Mater. Chem. A, 2016,4, 17686-17693

Design of a novel fuel cell-Fenton system: a smart approach to zero energy depollution

T. X. Huong Le, R. Esmilaire, M. Drobek, M. Bechelany, C. Vallicari, D. L. Nguyen, A. Julbe, S. Tingry and M. Cretin, J. Mater. Chem. A, 2016, 4, 17686 DOI: 10.1039/C6TA05443A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements