Issue 38, 2016

A nanoporous PtCuTi alloy with a low Pt content and greatly enhanced electrocatalytic performance towards methanol oxidation and oxygen reduction

Abstract

Pt-based electrocatalysts play a crucial role in both the anode and cathode reactions of direct methanol fuel cells (DMFCs), but their activity/durability and cost are still the main issues to be addressed. Through the combination of mechanical alloying with dealloying, here we have fabricated a nanoporous PtCuTi (np-PtCuTi) alloy with a low Pt content from a Cu-based precursor. The np-PtCuTi alloy exhibits a three-dimensional bi-continuous interpenetrating ligament/channel structure with a ligament size of 3.1 ± 0.6 nm. Electrochemical measurements show that the np-PtCuTi alloy exhibits superior electrocatalytic activities (CO tolerance, specific and mass activity) towards methanol oxidation at the anode, compared to commercial PtC catalysts. Moreover, the np-PtCuTi catalyst shows an enhancement of 1.9 and 4.2 times in the mass and specific activity towards the oxygen reduction reaction (ORR) at the cathode compared to PtC, respectively. More importantly, the np-PtCuTi catalyst shows excellent catalytic durability for the ORR, and the mass activity retains 91.8% of the initial value after 20 000 cycles. In addition, the mechanisms for the activity enhancement of np-PtCuTi have been rationalized on the basis of the structural effect, alloying effect and electronic effect through experiments and density functional theory calculations.

Graphical abstract: A nanoporous PtCuTi alloy with a low Pt content and greatly enhanced electrocatalytic performance towards methanol oxidation and oxygen reduction

Supplementary files

Article information

Article type
Paper
Submitted
04 Jul 2016
Accepted
23 Aug 2016
First published
25 Aug 2016

J. Mater. Chem. A, 2016,4, 14657-14668

A nanoporous PtCuTi alloy with a low Pt content and greatly enhanced electrocatalytic performance towards methanol oxidation and oxygen reduction

Y. Wang, K. Yin, J. Zhang, C. Si, X. Chen, L. Lv, W. Ma, H. Gao and Z. Zhang, J. Mater. Chem. A, 2016, 4, 14657 DOI: 10.1039/C6TA05570B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements