Issue 40, 2016

Multifunctional redox-tuned viologen-based covalent organic polymers

Abstract

The immobilization of molecular switches within materials can give rise to new bulk properties that are useful for a variety of applications. Here, we report the synthesis and characterization of covalent organic polymers composed of cyclotriphosphazene core moieties linked together by redox-switchable viologen units. The polymers are isolated as non-porous, micro- and nano-sized spherical particles whose constituent viologens allow access to three distinct redox states: dicationic, radical-cationic and neutral. With viologens in their dicationic state, the particles were used for magic printing, gaseous ammonia sensing, and efficient oxoanion capture. With viologens in any oxidation state, the polymers were capable of capturing 200 to 380% of their weight of iodine vapor. Iodine capture within all of the viologen-based polymers was fast, requiring minutes, as compared to capture by previously reported polymers, which requires hours. With viologens in their neutral state, the polymers exhibited the highest iodine loadings reported to date. Upon one and two-electron reduction, the polymers partially or completely lost their cationic character and, concomitantly, their anion removal capability.

Graphical abstract: Multifunctional redox-tuned viologen-based covalent organic polymers

Supplementary files

Article information

Article type
Paper
Submitted
28 Jul 2016
Accepted
05 Sep 2016
First published
05 Sep 2016

J. Mater. Chem. A, 2016,4, 15361-15369

Multifunctional redox-tuned viologen-based covalent organic polymers

G. Das, T. Prakasam, S. Nuryyeva, D. S. Han, A. Abdel-Wahab, J. Olsen, K. Polychronopoulou, C. Platas-Iglesias, F. Ravaux, M. Jouiad and A. Trabolsi, J. Mater. Chem. A, 2016, 4, 15361 DOI: 10.1039/C6TA06439F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements