Issue 43, 2016

Biohybrid architectures for efficient light-to-current conversion based on photosystem I within scalable 3D mesoporous electrodes

Abstract

The combination of advanced materials and defined surface design with complex proteins from natural photosynthesis is currently one of the major topics in the development of biohybrid systems and biophotovoltaic devices. In this study transparent mesoporous indium tin oxide (μITO) electrodes have been used in combination with the trimeric supercomplex photosystem I (PSI) from Thermosynechococcus elongatus and the small redox protein cytochrome c (cyt c) from horse heart to fabricate advanced and efficient photobiocathodes. The preparation of the μITO via spin coating allows easy scalability and ensures a defined increase in the electrochemically active surface area with accessibility for both proteins. Using these 3D electrodes up to 40 μm thickness, the immobilization of cyt c and PSI with full monolayer coverage and their electrical communication to the electrode can be achieved. Significant improvement can be made when the heterogenous electron transfer rate constant of cyt c with the electrode is increased by an appropriate surface treatment. The photocurrent follows linearly the thickness of the μITO and current densities of up to 150 μA cm−2 can be obtained without indications of a limitation. The internal quantum efficiency is determined to be 39% which demonstrates that the wiring of PSI via cyt c can be advantageously used in a system with high protein loading and efficient electron pathways inside 3D transparent conducting oxides.

Graphical abstract: Biohybrid architectures for efficient light-to-current conversion based on photosystem I within scalable 3D mesoporous electrodes

Supplementary files

Article information

Article type
Paper
Submitted
19 Aug 2016
Accepted
03 Oct 2016
First published
03 Oct 2016

J. Mater. Chem. A, 2016,4, 17009-17017

Biohybrid architectures for efficient light-to-current conversion based on photosystem I within scalable 3D mesoporous electrodes

K. R. Stieger, S. C. Feifel, H. Lokstein, M. Hejazi, A. Zouni and F. Lisdat, J. Mater. Chem. A, 2016, 4, 17009 DOI: 10.1039/C6TA07141D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements