Issue 43, 2016

Composite batteries: a simple yet universal approach to 3D printable lithium-ion battery electrodes

Abstract

Printable energy storage is anticipated to facilitate innovation in the manufacture of flexible electronics and soft robotics by enabling direct integration of a power source into a system during the fabrication process. To this end, we have established a universal approach to develop 3D printable, free-standing electrodes with an embedded current collector for high-performance Li-ion batteries. This simple approach utilizes a well-dispersed mixture of active material, carbon nanofibers, and polymer to make castable or printable electrode inks. By tuning the ratios of these components in a series of inks, we have observed the effect each parameter had on the resulting rheological, electrochemical, and mechanical properties. Once properly balanced, free-standing electrodes of three common Li-ion battery active materials (i.e., lithium titanate (Li4Ti5O12), lithium iron phosphate (LiFePO4), and lithium cobalt oxide (LiCoO2)) were prepared, each demonstrating excellent cyclability and rate capability. Finally, electrodes were successfully patterned using a direct ink writing method, and a fully-printed, working electrode plus separator electrode assembly were developed.

Graphical abstract: Composite batteries: a simple yet universal approach to 3D printable lithium-ion battery electrodes

Supplementary files

Article information

Article type
Paper
Submitted
02 Sep 2016
Accepted
01 Oct 2016
First published
14 Oct 2016

J. Mater. Chem. A, 2016,4, 16856-16864

Composite batteries: a simple yet universal approach to 3D printable lithium-ion battery electrodes

R. R. Kohlmeyer, A. J. Blake, J. O. Hardin, E. A. Carmona, J. Carpena-Núñez, B. Maruyama, J. Daniel Berrigan, H. Huang and M. F. Durstock, J. Mater. Chem. A, 2016, 4, 16856 DOI: 10.1039/C6TA07610F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements