Bridged bisnitramide-substituted furazan-based energetic materials†
Abstract
A series of bridged bisnitramide energetic compounds was designed and synthesized based on amino/nitro-functionalized furazans with methyl-NNO-azoxy, 1,2,4-oxadiazole and 3-hydrazino(imino)methyl side-chain groups. For comparison, 4-(methyl-azoxy)-3-nitraminofurazan as a direct nitration product and the corresponding ammonium salt were also prepared. All new compounds were thoroughly characterized by IR, NMR, elemental analyses, and differential scanning calorimetry (DSC). Two of them were further confirmed by single-crystal X-ray diffraction analysis. Heats of formation and detonation properties were calculated by using Gaussian 03 and EXPLO 5 programs, respectively. Energetic evaluation indicates that these compounds have potential to compete with the traditional explosive TNT and in some cases approach high explosive PETN. In addition, these results show that the combination of alkyl-bridging moiety and furazan ring expand the options for the design of new energetic materials with varying sensitivities.