The preparation and characterization of nitric oxide releasing silicone rubber materials impregnated with S-nitroso-tert-dodecyl mercaptan†
Abstract
Recently, considerable research efforts have focused on increasing the biocompatibility and bactericidal activity of biomedical polymeric devices (e.g., catheters, etc.) through incorporation of nitric oxide (NO) releasing molecules. NO is an important endogenous molecule that is well known for enhancing blood flow via its vasodilatory activity, but it also exhibits potent antithrombotic and antimicrobial properties. In this work, we demonstrate that silicone rubber tubing can be impregnated with a tertiary S-nitrosothiol (RSNO), S-nitroso-tert-dodecylmercaptan, via a simple solvent swelling method. We further characterize the NO release and RSNO leaching from the tubing over time via use of chemiluminescence and UV/Vis spectroscopy, respectively. The tubing is shown to maintain an NO flux above the physiological levels released by endothelial cells, 0.5–4.0 × 10−10 mol cm−2 min−1, for more than 3 weeks while stored at 37 °C and exhibit minimal leaching. Finally, the RSNO impregnated tubing exhibits significant antimicrobial activity over a 21 d period (vs. controls) during incubation in a CDC bioreactor after inoculation of media with S. aureus bacteria. The use of such lipophilic RSNO impregnated silicone rubber tubing could dramatically reduce the risk of catheter-related infections, which are a common problem associated with placement of intravascular or urinary catheters.