Issue 3, 2016

Inverse high internal phase emulsion polymerization (i-HIPE) of GMMA, HEMA and GDMA for the preparation of superporous hydrogels as a tissue engineering scaffold

Abstract

A series of novel superporous hydrogels for regenerative medicine were prepared by oil-in-water (o/w) or inverse high internal phase emulsion (i-HIPE) copolymerization of glycerol monomethacrylate (GMMA), 2-hydroxy ethyl methacrylate (HEMA) and glycerol dimethacrylate (GDMA) as a cross-linker using a non toxic solvent and a redox initiator system at the physiological temperature (37 °C). The monomer GMMA was synthesized from glycidyl methacrylate (GMA) by an alternative facile method using Amberlyst-15. The described i-HIPEs showed a significantly wider stability window. The polyHIPE hydrogels were characterized by FTIR, BET method for surface area, mercury porosimetry, SEM, DSC, TGA, XRD, compressive strain and strain recovery. The swelling ratio of the hydrogels and their degradation in 0.007 M NaOH and lipase B (Candida antarctica) solutions were determined gravimetrically and the rate of degradation was explained in terms of the molecular structure of the hydrogels. The morphological studies showed that the pore diameter varied between 20 and 30 μm and the pore throats (interconnecting windows) diameter was in the range of 4–8 μm. The described polyHIPE hydrogels were found to have an open cell morphology and interconnected pore architecture, which are important characteristics for scaffold applications. The initial cytotoxicity study performed according to ISO-10993-5 indicated cytocompatibility (97% cell viability) and the subsequent cell seeding and proliferation study exhibited 55–88% cell viability (increased monotonously from GHG-1 to GHG-5), which could be attributed to modulation of the physical and chemical properties of the hydrogels. The described super porous hydrogels are considered as potential candidates for scaffold materials in tissue engineering applications.

Graphical abstract: Inverse high internal phase emulsion polymerization (i-HIPE) of GMMA, HEMA and GDMA for the preparation of superporous hydrogels as a tissue engineering scaffold

Supplementary files

Article information

Article type
Paper
Submitted
09 Sep 2015
Accepted
26 Nov 2015
First published
26 Nov 2015

J. Mater. Chem. B, 2016,4, 450-460

Author version available

Inverse high internal phase emulsion polymerization (i-HIPE) of GMMA, HEMA and GDMA for the preparation of superporous hydrogels as a tissue engineering scaffold

A. C. Nalawade, R. V. Ghorpade, S. Shadbar, M. S. Qureshi, N. N. Chavan, A. A. Khan and S. Ponrathnam, J. Mater. Chem. B, 2016, 4, 450 DOI: 10.1039/C5TB01873K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements