Issue 6, 2016

Novel triphosphorylation polyurethane nanoparticles for blood-contacting biomaterials' coating

Abstract

Improving hemocompatibility of biomaterials and devices contacting the human blood has been the subject of intensive research. In this study, we synthesized a novel excellent blood compatible polyurethane/sodium triphosphate nanoparticle (PU/STPP). Characterization of polyurethane/sodium triphosphate (PU/STPP) nanoparticles was carried out by transmission electron microscopy (TEM), scanning electron microscopy (SEM), dynamic light scattering (DLS), nuclear magnetic resonance (NMR), and energy dispersive spectroscopy (EDS). Blood compatibility assessment of PU/STPP nanoparticles was performed by in vitro coagulation time, plasma clotting time, hemolysis rate, and red blood cell morphology tests. Cell compatibility evaluations of PU/STPP nanoparticles were obtained by MTT cell viability tests. The PU/STPP nanoparticles also were used to modify vascular prostheses with cosedimentation. Platelet adhesion tests showed that blood compatibility of vascular prostheses coated with PU/STPP nanoparticles is better than that of pure vascular prostheses.

Graphical abstract: Novel triphosphorylation polyurethane nanoparticles for blood-contacting biomaterials' coating

Supplementary files

Article information

Article type
Paper
Submitted
09 Sep 2015
Accepted
18 Dec 2015
First published
22 Dec 2015

J. Mater. Chem. B, 2016,4, 1116-1121

Author version available

Novel triphosphorylation polyurethane nanoparticles for blood-contacting biomaterials' coating

J. Zhang, Z. Sun, H. Zhu, Q. Guo, C. He, A. Xia, H. Mo, X. Huang and J. Shen, J. Mater. Chem. B, 2016, 4, 1116 DOI: 10.1039/C5TB01877C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements