Issue 8, 2016

Complex coacervates of oppositely charged co-polypeptides inspired by the sandcastle worm glue

Abstract

Sandcastle worms secrete a water-resistant proteinaceous glue that is used to bind mineral particulates into their protective tubing. Previous proteomics studies have shown that the constitutive proteins of the glue are oppositely charged co-polypeptides that form a complex coacervate precursor phase, which is critical for stable underwater delivery of the adhesive. Using ring-opening polymerization (ROP) from N-carboxyanhydride (NCA) monomers, we synthesized oppositely charged co-polypeptides that mimic the amino acid composition and molecular weight of the native glue-forming proteins. The synthesis strategy enabled the incorporation of non-standard phosphoserine (pSer) and 3,4-Dihydroxyphenylalanine (Dopa) amino acids in the co-polypeptides, thereby duplicating chemical functionalities of the native glue that are key for electrostatic complexation and adhesion. Complex coacervates were obtained from these oppositely charged co-polypeptides, thus mimicking the self-assembly process of the native adhesive secreted by the sandcastle worm. Varying the relative ratio of the co-polypeptides enabled the fine-tuning of coacervation conditions such as pH and ionic strength. Wetting and rheological characterization demonstrated that our oppositely charged co-polypeptide complexes exhibited the key features associated with coacervates, namely, low surface tension, shear thinning behaviour, and viscoelastic response, making these sandcastle worm glue-inspired polypeptide coacervates a suitable modality for water-resistant bioadhesives.

Graphical abstract: Complex coacervates of oppositely charged co-polypeptides inspired by the sandcastle worm glue

Supplementary files

Article information

Article type
Paper
Submitted
03 Nov 2015
Accepted
18 Jan 2016
First published
18 Jan 2016

J. Mater. Chem. B, 2016,4, 1544-1556

Complex coacervates of oppositely charged co-polypeptides inspired by the sandcastle worm glue

L. Zhang, V. Lipik and A. Miserez, J. Mater. Chem. B, 2016, 4, 1544 DOI: 10.1039/C5TB02298C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements