Issue 11, 2016

Tuning of glyconanomaterial shape and size for selective bacterial cell agglutination

Abstract

Multivalent glycosystems are potential candidates for anti-adhesive therapy, a non-lethal approach against the ever increasing antibiotic resistance of pathogenic bacteria. In order to fine-tune the glyconanomaterial size and shape for selective bacterial cell agglutination, herein we report the synthesis of sugar-coated dynamic and polymeric 3D-micelles and 1D-carbon nanotubes. The reported shot-gun like synthetic approach is based on the ability of diacetylenic-based neoglycolipids to self-assemble into micelles in water and hierarchically self-assemble into hemimicelles on a single-walled carbon nanotube surface. The affinity of the nanosystems was preliminarily assessed by enzyme-linked lectin assay (ELLA) using the mannose-specific Concanavalin A lectin as a model receptor. Relative binding potency enhancements, compared to methyl α-D-mannopyranoside used as control, from 10- to 25- to 2340-folds in sugar molar basis were observed when passing from 3D dynamic micelles to static micelles, to 1D-mannose coated carbon nanotubes, respectively, indicative of a significant cluster glycoside effect. Importantly, these results were confirmed in vivo showing that the 1D-glyconanoring-coated carbon nanotubes efficiently and selectively regulate the agglutination and proliferation of the enterobacteria Escherichia coli type 1 fimbriae. These findings highlight the potential of sugar coated nano-materials as novel and effective tools in the control of bacterial pathogenesis.

Graphical abstract: Tuning of glyconanomaterial shape and size for selective bacterial cell agglutination

Supplementary files

Article information

Article type
Paper
Submitted
26 Nov 2015
Accepted
15 Feb 2016
First published
16 Feb 2016

J. Mater. Chem. B, 2016,4, 2028-2037

Author version available

Tuning of glyconanomaterial shape and size for selective bacterial cell agglutination

J. J. Cid Martín, M. Assali, E. Fernández-García, V. Valdivia, E. M. Sánchez-Fernández, J. M. Garcia Fernández, R. E. Wellinger, I. Fernández and N. Khiar, J. Mater. Chem. B, 2016, 4, 2028 DOI: 10.1039/C5TB02488A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements