Issue 12, 2016

Electro-chemo-biomimetics from conducting polymers: fundamentals, materials, properties and devices

Abstract

Conjugated conducting polymers, intrinsic conducting polymers or conducting polymers are complex and mixed materials; their electroactive fractions follow reversible oxidation/reduction reactions giving reversible volume variations to lodge or expel charge-balance counterions and osmotic-balance solvent molecules. The material content (reactive macromolecules, ions and water) mimics the dense intracellular matrix gel of living cells. Here the electropolymerization mechanism is reviewed highlighting the presence of parallel reactions resulting in electroactive and non-electroactive fractions of the final material. Conducting polymers are classified into nine different material families. Each of those families follows a prevalent reaction-driven exchange of anions or cations during oxidation/reduction (p-doping/p-dedoping or n-doping/n-dedoping). Polyaniline families also follow reaction-driven exchange of protons. The polymer/counterion composition changes for several orders of magnitude in a reversible way with the reversible reaction. The value of each of the different composition-dependent properties of the material also shifts in a reversible way driven by the reaction. Each property mimics another change in functional biological organs. A family of biomimetic devices is being developed based on each biomimetic property. Those electrochemical devices work driven by reactions of the constitutive material, as biological organs do. The simultaneous variation of several composition-dependent properties during the reaction announces an unparalleled technological world of multifunctional devices: several tools working simultaneously in one device. Such properties and devices are driven by electrochemical reactions: they are Faradaic devices and must be characterized by using electrochemical cells and electro-chemical methodologies.

Graphical abstract: Electro-chemo-biomimetics from conducting polymers: fundamentals, materials, properties and devices

Article information

Article type
Review Article
Submitted
08 Jan 2016
Accepted
24 Feb 2016
First published
24 Feb 2016

J. Mater. Chem. B, 2016,4, 2069-2085

Author version available

Electro-chemo-biomimetics from conducting polymers: fundamentals, materials, properties and devices

T. F. Otero and J. G. Martinez, J. Mater. Chem. B, 2016, 4, 2069 DOI: 10.1039/C6TB00060F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements