Issue 22, 2016

Glucan microparticles thickened with thermosensitive gels as potential carriers for oral delivery of insulin

Abstract

Although glucan microparticles (GMs) can be efficiently taken up and transported by M cells, their subsequent accumulation in lymphatic tissues of sub-follicle-associated epithelia (FAE) in Peyer's patches might present a barrier to the oral delivery of insulin by GMs into the systemic circulation. The goal of this study is to weigh the potential of GMs as carriers for oral delivery of systemic therapeutics using insulin (INS) as a model drug. INS is encapsulated into the inner cavities of GMs by repeated soaking in INS solution at acidic pH values and switching to an isoelectric pH of 5.6 to precipitate INS. To immobilize INS, a thermosensitive poloxamer 407 (P407) gel is introduced into the interior of GMs. Interiorly thickened GMs show significantly decreased in vitro release and well protected INS stability against enzyme-enriched media, highlighting the importance of thickening with P407 gels. A mild and prolonged hypoglycaemic effect is achieved in both normal and diabetic rats for a duration of at least 20 h with pharmacological bioavailability as high as about 9–10%. Lymphatic transportation of GMs is investigated by labelling with a near-infrared water-quenching fluorescent probe in a conscious mesentery lymphatic duct cannulation rat model following oral administration. GMs appear in lymph within the first 2 h, peak at around 6 h and slow down after 10 h with a cumulative amount of over 8% in 24 h. The high correlation between lymphatic transportation and pharmacological bioavailability implies that GMs are principally absorbed via the lymphatic route. An in vitro study on phagocytosis by macrophages confirms the easy and fast uptake of GMs by J774A.1 cell lines with as many as over 10 particles within the cytoplasm of a single cell. Intracellular pharmacokinetics indicates robustness and persistent residence of GMs within the cells. Little effect on cell viability and tight junctions was observed in Caco-2 cell models. It is concluded that GMs are mainly absorbed via the lymphatic route and show potential as carriers for oral delivery of labile therapeutics, though with limited bioavailability due to the sub-FAE residence barriers.

Graphical abstract: Glucan microparticles thickened with thermosensitive gels as potential carriers for oral delivery of insulin

Supplementary files

Article information

Article type
Paper
Submitted
27 Jan 2016
Accepted
11 Apr 2016
First published
13 Apr 2016

J. Mater. Chem. B, 2016,4, 4040-4048

Author version available

Glucan microparticles thickened with thermosensitive gels as potential carriers for oral delivery of insulin

Y. Xie, S. Jiang, F. Xia, X. Hu, H. He, Z. Yin, J. Qi, Y. Lu and W. Wu, J. Mater. Chem. B, 2016, 4, 4040 DOI: 10.1039/C6TB00237D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements