Issue 46, 2016

Molecular simulation of pH-dependent diffusion, loading, and release of doxorubicin in graphene and graphene oxide drug delivery systems

Abstract

In this study, the adsorption of doxorubicin (DOX), an anticancer drug, on pristine graphene (PG) and graphene oxide (GO) nanocarriers with different surface oxygen densities and in an aqueous environment with varying pH levels was investigated using molecular dynamics (MD) simulation. The drug loading and release on the GO nanocarrier was also simulated using pH as the controller mechanism. Overall, the DOX/nanocarrier interactions become stronger as the graphene surface oxygen density increases. Although pH has a negligible effect on the single-molecule drug adsorption on the GO surfaces under acidic and neutral conditions, significantly stronger DOX/nanocarrier interactions occur for the GO nanosheet with a lower surface oxygen density (GO-16, with an O/C ratio of 1 : 6) at basic pH levels. Moreover, the DOX/nanocarrier interactions are greatly weakened in the GO nanosheet with higher surface oxygen density (GO-13, with an O/C ratio of 1 : 3) under basic conditions. These observations are partly attributed to a more favorable geometry of the DOX molecule on the GO-16 surface as opposed to a loosely attached DOX molecule on the edges of the GO-13 nanosheet. When comparing the adsorption kinetics and transport properties of the DOX molecule in different GO systems, the drug diffusion coefficient increases with decreasing pH value (going from basic to neutral to acidic) due to the reduced total water–nanocarrier interactions. The latter observation is an indication of the more facilitated transport of the DOX molecule in an aqueous medium towards the nanocarrier surface at lower pH levels. Finally, we have confirmed the loading and release of the DOX molecules on the GO nanocarrier under neutral (pH = 7) and acidic (pH = 5) conditions, respectively. The former signifies the blood pH level, whereas the latter is reminiscent of the pH of a tumorous cell. The computational results presented in this work reveal the underlying mechanisms of DOX loading and release on PG and GO surfaces, which may be used to design better graphene-based nanocarriers for the DOX delivery and targeting applications.

Graphical abstract: Molecular simulation of pH-dependent diffusion, loading, and release of doxorubicin in graphene and graphene oxide drug delivery systems

Supplementary files

Article information

Article type
Paper
Submitted
23 Mar 2016
Accepted
24 Oct 2016
First published
25 Oct 2016

J. Mater. Chem. B, 2016,4, 7441-7451

Molecular simulation of pH-dependent diffusion, loading, and release of doxorubicin in graphene and graphene oxide drug delivery systems

M. Mahdavi, F. Rahmani and S. Nouranian, J. Mater. Chem. B, 2016, 4, 7441 DOI: 10.1039/C6TB00746E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements