Issue 33, 2016

Nanomaterial-based vaccine adjuvants

Abstract

Vaccination is a biological process that administers antigenic materials to stimulate an individual's immune system to develop immunity to a specific pathogen. It is the most effective tool to prevent illness and death from infectious diseases or diseases leading to cancers. Because many recombinant and synthetic antigens are poorly immunogenic, an adjuvant is essentially added to the vaccine formula that can potentiate the immune responses, offer better protection against pathogens and reduce the amount of antigens needed for protective immunity. To date, there have been nearly 100 different types of adjuvants associated with about 400 vaccines that are either commercially available or under development. Among these adjuvants, many of them are particulates and nano-scale in nature. Nanoparticles represent a wide range of materials with novel physicochemical properties that exhibit immunostimulatory effects. However, the mechanistic understanding of how their physicochemical properties affect immunopotentiation remains elusive. In this article, we aim to review the current developmental status of nanomaterial-based vaccine adjuvants, and further discuss their acting mechanisms, the understanding of which will benefit the rational design of effective vaccine adjuvants with improved immunogenicity for prevention of infectious diseases as well as therapeutic cancer treatment.

Graphical abstract: Nanomaterial-based vaccine adjuvants

Article information

Article type
Review Article
Submitted
05 May 2016
Accepted
12 Jul 2016
First published
15 Jul 2016

J. Mater. Chem. B, 2016,4, 5496-5509

Author version available

Nanomaterial-based vaccine adjuvants

B. Sun and T. Xia, J. Mater. Chem. B, 2016, 4, 5496 DOI: 10.1039/C6TB01131D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements