Issue 47, 2016

Efficient delivery of chlorin e6 into ovarian cancer cells with octalysine conjugated superparamagnetic iron oxide nanoparticles for effective photodynamic therapy

Abstract

In cancer treatment, efficient delivery of active anticancer drugs into cancer cells is highly desirable for maximizing therapeutic effects and alleviating side effects. In this work, a nanocarrier consisting of an Fe3O4 core, a polyglycerol coating, and an octalysine functionality (SPION-PG-Lys8) has been designed, synthesized and used to deliver a photosensitizer, chlorin e6 (Ce6), into cancer cells for photodynamic therapy (PDT) of cancer cells. SPION-PG-Lys8 is colloidally stable in various aqueous solutions, showing a high positive zeta potential of 47.2 ± 6.9 mV in pure water. In vitro characterization reveals that SPION-PG-Lys8 is efficiently taken up by SKOV3 ovarian cancer cells, exhibiting low cytotoxicity, and suppressed autophagy compared to bare SPIONs. Negatively charged Ce6 is thus loaded on the SPION-PG-Lys8 through electrostatic attraction to yield a SPION-PG-Lys8/Ce6 nanocomplex with a positive zeta potential of 22.4 ± 4.3 mV. SPION-PG-Lys8/Ce6 is more easily taken up by the cells than free Ce6, and surprisingly, the internalized SPION-PG-Lys8/Ce6 is found to be enriched in the mitochondria. SPION-PG-Lys8/Ce6 exhibits almost no cytotoxicity under dark conditions, but strong photocytotoxicity due to the light-triggered production of reactive oxygen species (ROS) destroying the mitochondria. Taken together, our results highlight the great potential of SPION-PG-Lys8 as an efficient carrier of Ce6 for photodynamic cancer therapy.

Graphical abstract: Efficient delivery of chlorin e6 into ovarian cancer cells with octalysine conjugated superparamagnetic iron oxide nanoparticles for effective photodynamic therapy

Supplementary files

Article information

Article type
Paper
Submitted
07 Aug 2016
Accepted
02 Nov 2016
First published
07 Nov 2016
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. B, 2016,4, 7741-7748

Efficient delivery of chlorin e6 into ovarian cancer cells with octalysine conjugated superparamagnetic iron oxide nanoparticles for effective photodynamic therapy

L. Zhao, H. Yang, T. Amano, H. Qin, L. Zheng, A. Takahashi, S. Zhao, I. Tooyama, T. Murakami and N. Komatsu, J. Mater. Chem. B, 2016, 4, 7741 DOI: 10.1039/C6TB01988A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements