Issue 20, 2016

Organic vapor sensing behaviors of conductive thermoplastic polyurethane–graphene nanocomposites

Abstract

Conductive thermoplastic polyurethane (TPU) nanocomposites filled with graphene were fabricated and tested for organic vapor sensing. The observed finely dispersed graphene in the TPU matrix benefited from the formation of efficient conductive paths and the generation of stable electrical signals. Organic vapor sensing behaviors of the conductive polymer composites (CPCs) were evaluated using four kinds of organic vapors possessing different polarities (p), including cyclohexane (p = 0.1), tetrachloromethane (CCl4, p = 1.6), ethylacetate (p = 4.3) and acetone (p = 5.4). Unlike conventional CPCs that only respond to certain specific groups of organic vapors, the current CPCs showed a novel negative vapor coefficient (NVC) effect for all tested vapors. This observed NVC was due to both the inherent microphase segregation structure of TPU containing soft and hard segments and the wrinkled structure of graphene. In successive immersion-drying runs (IDRs) at 30 °C, fast response, good reversibility and reproducibility were observed for the non- and low- polar vapors (cyclohexane and CCl4), but residual resistance was observed for polar organic vapors (ethylacetate and acetone) after their desorption. The temperature dependent vapor sensing behaviors indicated that the vapor sensing responsivity increased with increasing the temperature due to higher absorption activation energy at higher temperature. This study provides guidelines for the fabrication of organic vapor sensors using CPCs possessing fast response, good discrimination ability and reproducibility.

Graphical abstract: Organic vapor sensing behaviors of conductive thermoplastic polyurethane–graphene nanocomposites

Supplementary files

Article information

Article type
Paper
Submitted
08 Mar 2016
Accepted
29 Mar 2016
First published
29 Mar 2016

J. Mater. Chem. C, 2016,4, 4459-4469

Organic vapor sensing behaviors of conductive thermoplastic polyurethane–graphene nanocomposites

H. Liu, W. Huang, X. Yang, K. Dai, G. Zheng, C. Liu, C. Shen, X. Yan, J. Guo and Z. Guo, J. Mater. Chem. C, 2016, 4, 4459 DOI: 10.1039/C6TC00987E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements