Issue 20, 2016

Strain-induced enhancement in the thermoelectric performance of a ZrS2 monolayer

Abstract

The increase of a thermoelectric material's figure of merit (ZT value) is limited by the interplay of the transport coefficients. Here we report the greatly enhanced thermoelectric performance of a ZrS2 monolayer by the biaxial tensile strain, due to the simultaneous increase of the Seebeck coefficient and decrease of the thermal conductivity. Based on first-principles calculations combined with the Boltzmann transport theory, we predict that the band structure of the ZrS2 monolayer can be effectively engineered by the strain, and the Seebeck coefficient is significantly increased. The thermal conductivity is reduced by the applied tensile strain due to the phonon softening. At the strain of 6%, the maximum ZT value of 2.4 is obtained for the p-type doped ZrS2 monolayer at 300 K, which is 4.3 times larger than that of the unstrained system. Moreover, the temperature dependence of the ZT values is investigated, and compared with the unstrained system, the ZT values of the p- and n-type doping are much more balanced by the applied strain.

Graphical abstract: Strain-induced enhancement in the thermoelectric performance of a ZrS2 monolayer

Article information

Article type
Paper
Submitted
18 Mar 2016
Accepted
13 Apr 2016
First published
13 Apr 2016

J. Mater. Chem. C, 2016,4, 4538-4545

Strain-induced enhancement in the thermoelectric performance of a ZrS2 monolayer

H. Y. Lv, W. J. Lu, D. F. Shao, H. Y. Lu and Y. P. Sun, J. Mater. Chem. C, 2016, 4, 4538 DOI: 10.1039/C6TC01135G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements