ON/OFF switching of silicon wafer electrochemistry by pH-responsive polymer brushes†
Abstract
pH-Switchable electrochemical properties are demonstrated for the first time for native oxide-coated silicon wafer electrodes. Ultrathin and ultrathick pH-responsive poly(methacrylic acid) (PMAA) brushes, obtained by surface-initiated atom transfer radical polymerization, were used to achieve redox gating. PMAA brushes are reversibly switched between their protonated and deprotonated states by alternating acidic and basic pH, which corresponds to a swelling/collapsing behavior. As a result, the electrochemical properties of the PMAA brush-modified silicon electrode are switched “ON” and “OFF” simply by changing pH. The electrochemical properties of the modified electrode were examined by means of cyclic voltammetry and electrochemical impedance spectroscopy both in the absence and presence of ruthenium(III) hexamine, a well-known cationic redox probe.