Issue 35, 2016

Energy transfer in pendant perylene diimide copolymers

Abstract

We report the synthesis, characterisation and polymerisation of two novel asymmetric perylene diimide acrylate monomers. The novel monomers form a sensitiser–acceptor pair capable of undergoing Förster resonance energy transfer, and were incorporated as copolymers with tert-butyl acrylate. The tert-butyl acrylate units act as spacers along the polymer chain allowing high concentrations of dye while mitigating aggregate quenching, leading to persistent fluorescence in the solid state at high concentrations of up to 0.3 M. Analysis of fluorescence kinetics showed efficient energy transfer between the optically dense sensitiser and the lower concentration acceptor luminophores within the polymer. This reduced reabsorption within the material demonstrates that the copolymer-scaffold energy transfer system has potential for use in luminescent solar concentrators.

Graphical abstract: Energy transfer in pendant perylene diimide copolymers

Supplementary files

Article information

Article type
Paper
Submitted
22 Jun 2016
Accepted
10 Aug 2016
First published
12 Aug 2016

J. Mater. Chem. C, 2016,4, 8270-8275

Energy transfer in pendant perylene diimide copolymers

N. J. L. K. Davis, R. W. MacQueen, D. A. Roberts, A. Danos, S. Dehn, S. Perrier and T. W. Schmidt, J. Mater. Chem. C, 2016, 4, 8270 DOI: 10.1039/C6TC02555B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements