Issue 42, 2016

Electrical and mechanical self-healing membrane using gold nanoparticles as localized “nano-heaters”

Abstract

Healable, electrically conductive membranes are essential for the fabrication of reliable electronic devices to reduce their replacement and maintenance costs. Here, we report the fabrication of a tri-layered, light-triggered healable and highly electrically conductive membrane by depositing reduced graphene oxide (rGO) and silver nanowires (Ag NWs) onto an electrospun fibrous composite of gold nanoparticle (Au NP) incorporated polycaprolactone (PCL). The obtained fibrous membrane (FM), denoted as Au@PCLx/rGO/Ag, has a highly conductive surface with sheet resistance as low as 11.5 Ω sq−1, and shows very good flexibility to repeated bending cycles. Under 532 nm light irradiation, selective self-healing is achieved in the FM via local heating generated by Au NPs. The FM is capable of healing both structural and electrical properties for multiple times without apparent loss of surface conductivity. This photothermal-responsive healable conductor may become a potential element for healable and intelligent optoelectronic devices.

Graphical abstract: Electrical and mechanical self-healing membrane using gold nanoparticles as localized “nano-heaters”

Supplementary files

Article information

Article type
Paper
Submitted
26 Aug 2016
Accepted
20 Sep 2016
First published
27 Sep 2016

J. Mater. Chem. C, 2016,4, 10018-10025

Electrical and mechanical self-healing membrane using gold nanoparticles as localized “nano-heaters”

L. Chen, L. Si, F. Wu, S. Y. Chan, P. Yu and B. Fei, J. Mater. Chem. C, 2016, 4, 10018 DOI: 10.1039/C6TC03699F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements