Three-dimensional defocused orientation sensing of single bimetallic core–shell gold nanorods as multifunctional optical probes†
Abstract
Bimetallic core–shell gold nanorods (AuNRs) are promising multifunctional orientation probes that can be employed in biological and physical studies. This paper presents the optical properties of single AuNRs coated with palladium (Pd) and platinum (Pt) under scattering-based dark-field (DF) microscopy. Strong longitudinal plasmon damping was observed for the bimetallic AuNRs due to Pd and Pt metals on the AuNR surface. Despite the strong plasmon damping, the bimetallic AuNRs yielded characteristic doughnut-shaped scattering patterns under defocused DF microscopy. Interestingly, a solid bright spot appeared at the center of the defocused scattering patterns due to strong damping in the longitudinal plasmon and the increased contribution from the transverse dipoles to the image patterns, which was verified further by a simulation study. Furthermore, the defocused scattering field distributions enabled a determination of the three-dimensional (3D) orientations of single bimetallic AuNRs through a pattern-match analysis technique without angular degeneracy. Therefore, deeper insight into the optical properties and defocused scattering patterns of single bimetallic AuNRs is provided, which can be used to develop multifunctional optical probes that are capable of sensing of the 3D orientation of a probe, biomolecules based on LSPR shift, gas and humidity, etc.