Issue 15, 2017

Mass, mobility and MSn measurements of single ions using charge detection mass spectrometry

Abstract

Charge detection mass spectrometry is used to measure the mass, charge, MSn and mobility of an individual ion produced by electrospray ionization of a 8 MDa polyethylene glycol sample. The charge detection mass spectrometer is an electrostatic ion trap that uses cone electrodes and a single tube detector and can detect ions for up to the full trapping time of 4.0 s. The time-domain signal induced on the detector tube by a single multiply charged ion can be complex owing to sequential fragmentation of the original precursor ion as well as increasing oscillation frequencies of the single ion owing to collisions with background gas that reduce the kinetic energy of the ion inside the trap. Simulations show that the ratio of the time for the ion to turn around inside the cone region of the trap to the time for the ion to travel through the detector tube is constant with m/z and increases with the ion energy per charge. By measuring this ratio, the kinetic energy of an ion can be obtained with good precision (∼1%) and this method to measure ion kinetic energies eliminates the necessity of ion energy selection prior to trapping for high precision mass measurement of large molecules in complex mixtures. This method also makes it possible to measure the masses of each sequential fragment ion formed from the original precursor ion. MS7 of a single multiply charged PEG molecule is demonstrated, and from these ion energy measurements and effects of collisions on the ion motion inside the trap, information about the ion mobility of the precursor ion and its fragments is obtained.

Graphical abstract: Mass, mobility and MSn measurements of single ions using charge detection mass spectrometry

Supplementary files

Article information

Article type
Paper
Submitted
13 Apr 2017
Accepted
13 May 2017
First published
14 Jun 2017

Analyst, 2017,142, 2760-2769

Mass, mobility and MSn measurements of single ions using charge detection mass spectrometry

A. G. Elliott, C. C. Harper, H. Lin and E. R. Williams, Analyst, 2017, 142, 2760 DOI: 10.1039/C7AN00618G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements