Plasmonic nanocone arrays for rapid and detailed cell lysate surface enhanced Raman spectroscopy analysis†
Abstract
In this work, we develop, fabricate, and characterize a plasmonic nanocone array surface enhanced Raman spectroscopy (SERS) substrate with a uniform enhancement factor on the micron scale for qualitative and quantiative cell and cell lysate analysis. This work demonstrates how SERS substrates can be used as cell-based biosensors given that the enhancement factor of the substrate is sufficient for Raman detection and that the uniformity is high over the applicable surface area. These requirements allow accurate and quantitative comparisons between nonuniform samples under varying biochemical conditions. We apply the developed SERS substrate for Raman measurements and mapping of HeLa cells and cell lysate. This method is used for identification of UV-induced damage and detection of nanomolar concentrations of methylated guanine spiked in cell lysate samples.