Issue 16, 2017

Naphthalene amine support for G-quadruplex isolation

Abstract

G-quadruplex (G4) is involved in many biological processes, such as telomere function, gene expression and DNA replication. The selective isolation of G4 using affinity ligands that bind tightly and selectively is a valuable strategy for discovering new G4 binders for the separation of G4 from duplexes or the discrimination of G4 structures. In this work, one affinity chromatographic support was prepared using a naphthalene amine as a G4 binder. The ligand was immobilized on epoxy-activated Sepharose CL-6B using a long spacer arm and was characterized by HR-MAS spectroscopy. The supercoiled (sc) isoform of pVAX1-LacZ and pVAX1-G4 was isolated from a native sample. Also, the recovery and isolation of the plasmid isoforms from Escherichia coli lysate samples were achieved using an ionic gradient with different concentrations of NaCl in 10 mM Tris-HCl (pH 7.4). The retention times of different DNA/single strand sequences that can form G4, such as, c-MYC, c-kit1, c-kit2, tetrameric, telomeric (23AG), thrombin aptamer (TBA) and 58Sγ3 in this support were evaluated. Our experimental results suggest that the support exhibits selectivity for parallel c-MYC and c-kit1 G4s. In vitro transcription was performed using purified sc pVAX1-G4 and pPH600 to induce G4 formation and circular dichroism (CD) analysis confirmed that both transcripts adopt a parallel G4 topology.

Graphical abstract: Naphthalene amine support for G-quadruplex isolation

Supplementary files

Article information

Article type
Paper
Submitted
18 Apr 2017
Accepted
05 Jul 2017
First published
07 Jul 2017

Analyst, 2017,142, 2982-2994

Naphthalene amine support for G-quadruplex isolation

J. Ferreira, T. Santos, P. Pereira, M. C. Corvo, J. A. Queiroz, F. Sousa and C. Cruz, Analyst, 2017, 142, 2982 DOI: 10.1039/C7AN00648A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements