Issue 16, 2017

A precise and accurate microfluidic droplet dilutor

Abstract

We demonstrate a microfluidic system for the precise (coefficient of variance between repetitions below 4%) and highly accurate (average difference from two-fold dilution below 1%) serial dilution of solutions inside droplets with a volume of ca. 1 μl. The two-fold dilution series can be prepared with the correlation coefficient as high as R2 = 0.999. The technique that we here describe uses hydrodynamic traps to precisely meter every droplet used in subsequent dilutions. We use only one metering trap to meter each and every droplet involved in the process of preparation of the dilution series. This eliminates the error of metering that would arise from the finite fidelity of fabrication of multiple metering traps. Metering every droplet at the same trap provides for high reproducibility of the volumes of the droplets, and thus high reproducibility of dilutions. We also present a device and method to precisely and accurately dilute one substance and simultaneously maintain the concentration of another substance throughout the dilution series without mixing their stock solutions. We compare the here-described precise and accurate dilution systems with a simple microdroplet dilutor that comprises several traps – each trap for a subsequent dilution. We describe the effect of producing more reproducible dilutions in a simple microdroplet dilutor thanks to the application of an alternating electric field.

Graphical abstract: A precise and accurate microfluidic droplet dilutor

Supplementary files

Article information

Article type
Paper
Submitted
24 Apr 2017
Accepted
09 Jun 2017
First published
12 Jun 2017

Analyst, 2017,142, 2901-2911

A precise and accurate microfluidic droplet dilutor

W. Postek, T. S. Kaminski and P. Garstecki, Analyst, 2017, 142, 2901 DOI: 10.1039/C7AN00679A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements