Issue 22, 2017

A baseline drift detrending technique for fast scan cyclic voltammetry

Abstract

Fast scan cyclic voltammetry (FSCV) has been commonly used to measure extracellular neurotransmitter concentrations in the brain. Due to the unstable nature of the background currents inherent in FSCV measurements, analysis of FSCV data is limited to very short amounts of time using traditional background subtraction. In this paper, we propose the use of a zero-phase high pass filter (HPF) as the means to remove the background drift. Instead of the traditional method of low pass filtering across voltammograms to increase the signal to noise ratio, a HPF with a low cutoff frequency was applied to the temporal dataset at each voltage point to remove the background drift. As a result, the HPF utilizing cutoff frequencies between 0.001 Hz and 0.01 Hz could be effectively used to a set of FSCV data for removing the drifting patterns while preserving the temporal kinetics of the phasic dopamine response recorded in vivo. In addition, compared to a drift removal method using principal component analysis, this was found to be significantly more effective in reducing the drift (unpaired t-test p < 0.0001, t = 10.88) when applied to data collected from Tris buffer over 24 hours although a drift removal method using principal component analysis also showed the effective background drift reduction. The HPF was also applied to 5 hours of FSCV in vivo data. Electrically evoked dopamine peaks, observed in the nucleus accumbens, were clearly visible even without background subtraction. This technique provides a new, simple, and yet robust, approach to analyse FSCV data with an unstable background.

Graphical abstract: A baseline drift detrending technique for fast scan cyclic voltammetry

Article information

Article type
Paper
Submitted
04 Sep 2017
Accepted
26 Sep 2017
First published
27 Sep 2017

Analyst, 2017,142, 4317-4321

A baseline drift detrending technique for fast scan cyclic voltammetry

M. DeWaele, Y. Oh, C. Park, Y. M. Kang, H. Shin, C. D. Blaha, K. E. Bennet, I. Y. Kim, K. H. Lee and D. P. Jang, Analyst, 2017, 142, 4317 DOI: 10.1039/C7AN01465A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements