Intracellular GSH-activated galactoside photosensitizers for targeted photodynamic therapy and chemotherapy†
Abstract
Ligand-targeted cancer therapeutics has been developed to minimize non-specific cytotoxicity via ligand–drug conjugates during the past few decades. We present here the design and synthesis of a GSH-activated amphiphilic photosensitizer conjugated with galactose (TPP-S-S-Gal) for targeted photodynamic therapy. Furthermore, the galactoside photosensitizer as supramolecular amphiphiles can self-assemble into micelles, which can be applied in integrative cancer treatment with chemotherapy drugs such as camptothecin (CPT) encapsulated in the hydrophobic core of micelles. Upon reaction with free thiol GSH that is relatively abundant in tumor cells, disulfide bond cleavage occurs as well as the active photosensitizer TPP and chemotherapy drug CPT release, which can cause cell apoptosis. The in vitro biological assessment of TPP-S-S-Gal micelles against the A549 cell line was evaluated by MTT assay, flow cytometry and confocal scanning laser microscopy, respectively. According to the MTT assay, TPP-S-S-Gal micelles exhibited low dark toxicity and efficient integrative efficacy of PDT and chemotherapy towards A549 cells after light irradiation.