Issue 5, 2017

Uniform TiO2 nanoparticles induce apoptosis in epithelial cell lines in a size-dependent manner

Abstract

The size of titanium dioxide (TiO2) nanoparticles is a vital parameter that determines their cytotoxicity. However, most reported studies have employed irregular shapes and sizes of TiO2 nanoparticles, as it is difficult to produce nanoparticles of suitable sizes for research. We produced good model TiO2 nanoparticles of uniform shape and size for use in studying their cytotoxicity. In this work, spherical, uniform polyethylene glycol-modified TiO2 (TiO2-PEG) nanoparticles of differing sizes (100, 200, and 300 nm) were prepared using the sol–gel method. A size-dependent decrease in cell viability was observed with increasing nanoparticle size. Furthermore, apoptosis was found to be positively associated with nanoparticle size, as evidenced by an increase in caspase-3 activity with increasing nanoparticle size. Larger nanoparticles exhibited higher cellular uptake, suggesting that larger nanoparticles more strongly induce apoptosis. In addition, the cellular uptake of different sizes of nanoparticles was energy dependent, suggesting that there are size-dependent uptake pathways. We found that 100 and 200 nm (but not 300 nm) nanoparticles were taken up via clathrin-mediated endocytosis. These results utilizing uniform nanoparticles suggest that the size-dependent cytotoxicity of nanoparticles involves active cellular uptake, caspase-3 activation, and apoptosis in the epithelial cell line (NCI-H292). These findings will hopefully aid in the future design and safe use of nanoparticles.

Graphical abstract: Uniform TiO2 nanoparticles induce apoptosis in epithelial cell lines in a size-dependent manner

Article information

Article type
Paper
Submitted
27 Dec 2016
Accepted
07 Mar 2017
First published
24 Mar 2017

Biomater. Sci., 2017,5, 1014-1021

Uniform TiO2 nanoparticles induce apoptosis in epithelial cell lines in a size-dependent manner

Q. Sun, T. Ishii, K. Kanehira, T. Sato and A. Taniguchi, Biomater. Sci., 2017, 5, 1014 DOI: 10.1039/C6BM00946H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements