pH and redox dual-sensitive polysaccharide nanoparticles for the efficient delivery of doxorubicin
Abstract
A pH and redox dual-sensitive biodegradable polysaccharide, succinic acid-decorated dextran-g-phenylalanine ethyl ester-g-cysteine ethyl ester (Dex-SA-L-Phe-L-Cys), was synthesized to load doxorubicin hydrochloride (DOX·HCl). The DOX-loaded nanoparticles, which were prepared in aqueous solution and free of organic solvent, could spontaneously self-assemble into uniform sizes. When loading DOX·HCl, mercapto Dex-SA-L-Phe-L-Cys was oxidized into a crosslinked disulfide linkage to form pH and redox dual-sensitive nanoparticles (DOX-S-NPs). The amphiphilic polymer loaded DOX·HCl into the core through electrostatic and hydrophobic interactions, meanwhile the crosslinked disulfide bond could stabilize the drug loaded nanoparticles. As a control with similar polymer structure, succinic acid decorated dextran-g-phenylalanine ethyl ester (Dex-SA-L-Phe) was prepared to obtain pH-sensitive DOX-loaded micelles (DOX-N-NPs). The controlled pH and redox-dependent release profiles of the DOX-S-NPs in vitro were certified in different releasing mediums. Furthermore, the cellular uptake of the DOX-S-NPs was comparable with that of free DOX·HCl, determined by confocal laser scanning microscopy (CLSM) and flow cytometry. Cytotoxicity assay in vitro showed that the DOX-S-NPs and free DOX·HCl were similar in inhibiting the proliferation of non-small cell lung carcinoma A549 and breast cancer MCF-7 cell lines. DOX-S-NPs displayed similar antitumor efficiency compared with free DOX·HCl, but lower toxicity by body weight. These dual-sensitive DOX-S-NPs provide a useful strategy for anti-tumor therapy.