Issue 24, 2017

A modular platform to develop peptoid-based selective fluorescent metal sensors

Abstract

Despite the reduction in industrial use of toxic heavy metals, there remain contaminated natural water sources across the world. Herein we present a modular platform for developing selective sensors for toxic metal ions using N-substituted glycine, or peptoid, oligomers coupled to a fluorophore. As a preliminary evaluation of this strategy, structures based on previously identified metal-binding peptoids were synthesized with terminal pyrene moieties. Both derivatives of this initial design demonstrated a turn-off response in the presence of various metal ions. A colorimetric screen was designed to identify a peptoid ligand that chelates Hg(II). Multiple ligands were identified that were able to deplete Hg(II) from a solution selectively in the presence of an excess of competing ions. The C-terminal fluoropeptoid derivatives demonstrated similar selectivity to their label-free counterparts. This strategy could be applied to develop sensors for many different metal ions of interest using a variety of fluorophores, leading to a panel of sensors for identifying various water source contaminants.

Graphical abstract: A modular platform to develop peptoid-based selective fluorescent metal sensors

Supplementary files

Article information

Article type
Communication
Submitted
10 Nov 2016
Accepted
10 Feb 2017
First published
08 Mar 2017

Chem. Commun., 2017,53, 3477-3480

A modular platform to develop peptoid-based selective fluorescent metal sensors

A. S. Knight, R. U. Kulkarni, E. Y. Zhou, J. M. Franke, E. W. Miller and M. B. Francis, Chem. Commun., 2017, 53, 3477 DOI: 10.1039/C7CC00931C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements