Fluorogenic NIR-probes based on 1,2,4,5-tetrazine substituted BF2-azadipyrromethenes†
Abstract
A series of 1,2,4,5-tetrazine integrated near infrared (NIR) fluorophores based on the BF2 azadipyrromethene (NIR-AZA) class has been synthesised and their ability to modulate emission from low to high in response to Diels–Alder cycloaditions has been assessed. Substituents on the tetrazine component of the probe (Cl, OMe, p-NO2C6H4O) were seen to strongly influence quantum yields, fluorescence enhancement factors, and rates of cycloadditions. Cycloadditions between tetrazine-NIR-AZA constructs and a strained alkyne substrate were seen to be highly efficient in organic or aqueous solutions and in gels with high fluorescence enhancements of up to 48-fold observed. Real-time demonstration of the cycloaddition mediated fluorogenic property was achieved by imaging the “turn-on” reaction within a continous flow micro-reactor. Preliminary evidence indicates that excited state quenching involves a photoinduced electron transfer.