Issue 99, 2017

Organocatalysis using aldehydes: the development and improvement of catalytic hydroaminations, hydrations and hydrolyses

Abstract

Organocatalysis has emerged as a powerful approach to facilitate and accelerate various difficult reactions. This Feature article presents recent developments and improvements using aldehydes as catalysts in difficult Cope-type intermolecular hydroamination, hydration and hydrolysis reactions. Most reactions exploit temporary intramolecularity. In catalytic Cope-type hydroaminations of allylic amines, aldehydes act as tethering catalysts, and allow room temperature reactions and high enantio- or diastereoselectivities if chiral aldehydes or reagents are used. Mechanistic studies showed that simpler catalysts such as formaldehyde are more active due to an improved ability to form the temporary tether, which translated in an improved reaction scope. Gratifyingly, improved catalytic efficiency and broad reaction scope were also observed in the aldehyde-catalyzed hydration of α-amino nitriles. Since destabilized aldehydes often favor temporary intramolecularity, this led to a comparison of the catalytic activity of several carbohydrates, and to experiments relevant in the prebiotic “origin of life” chemistry context. Studies on catalytic hydrolysis reactions of organophosphorous reagents are also presented, in which o-phthalaldehyde performs electrophilic activation of phosphinic amides, and other substrates possessing the P([double bond, length as m-dash]O)NH motif. Overall, this Feature article shows that aldehydes can be efficient catalysts in a variety of reactions, and highlights the efficiency of destabilized aldehydes such as formaldehyde and simple carbohydrates in this context.

Graphical abstract: Organocatalysis using aldehydes: the development and improvement of catalytic hydroaminations, hydrations and hydrolyses

Article information

Article type
Feature Article
Submitted
20 Sep 2017
Accepted
27 Oct 2017
First published
31 Oct 2017

Chem. Commun., 2017,53, 13192-13204

Organocatalysis using aldehydes: the development and improvement of catalytic hydroaminations, hydrations and hydrolyses

B. Li, C. EI-Nachef and A. M. Beauchemin, Chem. Commun., 2017, 53, 13192 DOI: 10.1039/C7CC07352F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements