Issue 34, 2017

Unidirectional growth of single crystalline β-Na0.33V2O5 and α-V2O5 nanowires driven by controlling the pH of aqueous solution and their electrochemical performances for Na-ion batteries

Abstract

We describe a novel synthetic route of highly single crystalline sodium vanadate (β-Na0.33V2O5) and vanadium pentoxide (α-V2O5) nanowires via a simple thermal annealing process followed by the formation of amorphous nanoparticles of V(OH)3 and Na-containing V(OH)3 precursors prepared by controlling the pH of precursor solutions. The distinct crystal growth process suggests that the intercalation of Na ions is governed by the pH of the aqueous solution. In addition, the binding nature to the amorphous V(OH)3 nanoparticle precursors could be a key factor in determining the unidirectional growth of highly single crystalline β-Na0.33V2O5 and α-V2O5 nanowires. The obtained single crystalline β-Na0.33V2O5 nanowire shows promising electrode performance for sodium-ion batteries (SIB) with greater discharge capacity and better rate characteristics compared with those of the α-V2O5 nanowire. The superior electrode functionality of β-Na0.33V2O5 over α-V2O5 is attributable to its better charge transfer kinetics and its higher structural and morphological stability.

Graphical abstract: Unidirectional growth of single crystalline β-Na0.33V2O5 and α-V2O5 nanowires driven by controlling the pH of aqueous solution and their electrochemical performances for Na-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
25 Apr 2017
Accepted
18 Jul 2017
First published
19 Jul 2017

CrystEngComm, 2017,19, 5028-5037

Unidirectional growth of single crystalline β-Na0.33V2O5 and α-V2O5 nanowires driven by controlling the pH of aqueous solution and their electrochemical performances for Na-ion batteries

Y. Lee, S. M. Oh, B. Park, B. U. Ye, N. Lee, J. M. Baik, S. Hwang and M. H. Kim, CrystEngComm, 2017, 19, 5028 DOI: 10.1039/C7CE00781G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements