Issue 28, 2017

Crystal growth and characterization of the pyrochlore Tb2Ti2O7

Abstract

Terbium titanate (Tb2Ti2O7) is a spin-ice material with remarkable magneto-optical properties. It has a high Verdet constant and is a promising substrate crystal for the epitaxy of quantum materials with the pyrochlore structure. Large single crystals with adequate quality of Tb2Ti2O7 or any pyrochlore are not available so far. Here we report the growth of high-quality bulk crystals using the Czochralski method to pull crystals from the melt. Prior work using the automated Czochralski method has suffered from growth instabilities like diameter fluctuation, foot formation and subsequent spiraling shortly after the seeding stage. In this study, the volumes of the crystals were strongly increased to several cubic centimeters by means of manual growth control, leading to crystal diameters of up to 40 mm and crystal lengths of up to 10 mm. Rocking curve measurements revealed full width at half maximum values between 28 and 40′′ for 222 reflections. The specific heat capacity cp was measured between room temperature and 1573 K by dynamic differential scanning calorimetry and shows the typical slow parabolic rise. In contrast, the thermal conductivity κ(T) shows a minimum near 700 K and increases at higher temperature T. Optical spectroscopy was performed at room temperature from the ultraviolet to the near infrared region, and additionally in the near infrared region up to 1623 K. The optical transmission properties and the crystal color are interpreted to be influenced by partial oxidation of Tb3+ to Tb4+.

Graphical abstract: Crystal growth and characterization of the pyrochlore Tb2Ti2O7

Article information

Article type
Paper
Submitted
17 May 2017
Accepted
12 Jun 2017
First published
12 Jun 2017

CrystEngComm, 2017,19, 3908-3914

Crystal growth and characterization of the pyrochlore Tb2Ti2O7

D. Klimm, C. Guguschev, D. J. Kok, M. Naumann, L. Ackermann, D. Rytz, M. Peltz, K. Dupré, M. D. Neumann, A. Kwasniewski, D. G. Schlom and M. Bickermann, CrystEngComm, 2017, 19, 3908 DOI: 10.1039/C7CE00942A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements