Issue 37, 2017

The impact of N,N′-ditopic ligand length and geometry on the structures of zinc-based mixed-linker metal–organic frameworks

Abstract

Combining Zn(NO3)2·6H2O with a series of dicarboxylic acids in the presence of the N,N′-ditopic ligand di(4-pyridyl)-1H-pyrazole (Hdpp) results in a series of mixed-linker metal–organic frameworks (MOFs) that have been crystallographically characterised. The reaction with 1,4-benzenedicarboxylic acid (H2bdc) gives [Zn2(bdc)2(Hdpp)2]·2DMF 1, which shows Zn2(μ-carboxylate)2(carboxylate)2 secondary building units (SBUs) linked by bdc ligands into sheets, and these are pillared by the Hdpp linkers into a doubly-interpenetrated three-dimensional network. The reaction with 1,4-naphthalene dicarboxylic acid (H2ndc-1,4) gives two products: [Zn2(1,4-ndc)2(Hdpp)]·4DMF 2a forms a three-dimensional network in which sheets, formed from Zn2(carboxylate)4 ‘paddle-wheel’ SBUs being linked by 1,4-ndc, are connected together by Hdpp pillars, whereas [Zn(1,4-ndc)(Hdpp)]·DMF 2b forms a fourfold interpenetrated structure based on diamondoid networks with single zinc centres as nodes. The reaction with 1,3-benzenedicarboxylic acid (H2mbdc) produces [Zn(mbdc)(Hdpp)]·DMF 3, which forms a two-dimensional network with (4,4) topology in which ZnO2N2 nodes are interlinked by mbdc and Hdpp linkers. The reaction with 5-methyl-1,3-benzenedicarboxylic acid (H2mbdc-Me) also forms a two-dimensional network structure, [Zn2(mbdc-Me)2(Hdpp)2]·DMF 4, albeit wherein dicarboxylates bridge between zinc-dicarboxylate tapes, themselves formed by interlinking of Zn2(μ-carboxylate)2(carboxylate)2 SBUs similar to those in 1. Finally, the reaction with 2,6-naphthalene dicarboxylic acid (H2ndc-2,6) yields two crystalline species, both having the formula [Zn2(2,6-ndc)2(Hdpp)]·DMF 5a/5b and possessing infinite zinc-carboxylate chain motifs interlinked by both naphthalene rings and Hdpp linkers into a three-dimensional framework. In compounds 1, 2b, 3 and 4, the pyrazole NH groups are involved in hydrogen bonding that serves to link either interpenetrated networks or neighbouring sheets together. However, in 2a and 5a/5b the NH groups project into the pores of the framework enabling interactions with guest molecules.

Graphical abstract: The impact of N,N′-ditopic ligand length and geometry on the structures of zinc-based mixed-linker metal–organic frameworks

Supplementary files

Article information

Article type
Paper
Submitted
08 Aug 2017
Accepted
12 Sep 2017
First published
18 Sep 2017
This article is Open Access
Creative Commons BY license

CrystEngComm, 2017,19, 5549-5557

The impact of N,N′-ditopic ligand length and geometry on the structures of zinc-based mixed-linker metal–organic frameworks

A. D. Burrows, S. Chan, W. J. Gee, M. F. Mahon, C. Richardson, V. M. Sebestyen, D. Turski and M. R. Warren, CrystEngComm, 2017, 19, 5549 DOI: 10.1039/C7CE01447C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements