Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution
Abstract
We have studied in this work the effect of increasing structural disorder on the persistent luminescence of a Cr3+ doped zinc gallate spinel. This disorder was introduced by progressive substitution of Zn2+ by Mg2+ ions, and was studied by photoluminescence, X-ray diffraction, extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES) and electron paramagnetic resonance (EPR) spectroscopy. It was found that increasing the Mg/Zn substitution decreases the number of Cr3+ in undistorted sites and increases the number of Cr3+ with neighbouring antisite defects and with neighbouring Cr3+ ions (referred to as Cr clusters), which in turn decreases the intensity of persistent luminescence. Both XANES and EPR spectra could be simulated by a linear combination of Cr3+ spectra with three types of Cr3+ environments. The increasing disorder was found to be correlated with a decrease of the average Cr–O bond length and a decrease of crystal field strength experienced by Cr3+ ions.