Issue 3, 2017

Decoupling of viscosity and relaxation processes in supercooled water: a molecular dynamics study with the TIP4P/2005f model

Abstract

During the last few decades, many experimental and numerical studies have tried to understand the special dynamics of water at low temperatures by measuring structural relaxation times or shear viscosity, but their conclusions strongly depended on the chosen observable and on the range of temperatures considered. Moreover, recent work [J. Chem. Phys. 2013, 138, 12A526] showed that viscosity and relaxation times could decouple at low temperature in a model binary mixture, raising questions on their equivalence to study supercooled water. Here we used molecular dynamics simulations with the promising TIP4P/2005f water force field to investigate the behavior of both the shear viscosity and the relaxation times of water in a large range of temperatures, in order to get a consistent picture of the dynamics of supercooled water. We show that the TIP4P/2005f model reproduces accurately the experimental values of both the viscosity and the diffusion coefficient over a very large range of temperatures. Focusing first on the structural relaxation dynamics, we observe a decoupling between the so-called α- and β-relaxation times of water at ca. 350 K, suggesting a supercooled-like dynamics over a very large domain of temperatures. By computing shear viscosity over this domain, we compare the accuracy of several phenomenological laws for low temperature dynamics of water to describe both viscosity and α-relaxation time. Unlike what is usually admitted, our tests suggest those quantities are not coupled at low temperatures, and thus should not be considered equivalent. In particular, deviations from the Stokes–Einstein relation appear at lower temperatures for the viscosity than for the α-relaxation time. These results open new perspectives to understand the dynamics of supercooled water and show the performance of the TIP4P/2005f force field to characterize it.

Graphical abstract: Decoupling of viscosity and relaxation processes in supercooled water: a molecular dynamics study with the TIP4P/2005f model

Supplementary files

Article information

Article type
Paper
Submitted
17 Nov 2016
Accepted
19 Dec 2016
First published
19 Dec 2016

Phys. Chem. Chem. Phys., 2017,19, 2124-2130

Decoupling of viscosity and relaxation processes in supercooled water: a molecular dynamics study with the TIP4P/2005f model

E. Guillaud, S. Merabia, D. de Ligny and L. Joly, Phys. Chem. Chem. Phys., 2017, 19, 2124 DOI: 10.1039/C6CP07863J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements