Issue 1, 2017

Exploring nanoparticle porosity using nano-impacts: platinum nanoparticle aggregates

Abstract

The porosity of platinum nanoparticles (PtNPs) is explored for the first time using tag-redox coulometry (TRC). This is achieved by monitoring the reduction of the 4-nitrobenzenethiol (NTP)-tagged PtNPs on carbon electrodes via both immobilisation and nanoimpacts. The average charge per impact is measured and attributed to the reduction of NTP adsorbed on individual PtNPs. The number of NTP molecules and thus the “active surface area” of the PtNPs is calculated and compared with two models: fully solid and porous nanoparticles, and the extent of the particle porosity is revealed. This allows a fuller understanding of the (electro-)catalytic behaviour of nanoparticles by providing insight into their porosity and “true/active surface areas”.

Graphical abstract: Exploring nanoparticle porosity using nano-impacts: platinum nanoparticle aggregates

Supplementary files

Article information

Article type
Communication
Submitted
18 Nov 2016
Accepted
08 Dec 2016
First published
08 Dec 2016

Phys. Chem. Chem. Phys., 2017,19, 64-68

Exploring nanoparticle porosity using nano-impacts: platinum nanoparticle aggregates

X. Jiao, S. V. Sokolov, E. E. L. Tanner, N. P. Young and R. G. Compton, Phys. Chem. Chem. Phys., 2017, 19, 64 DOI: 10.1039/C6CP07910E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements