Connectivity dependence of Fano resonances in single molecules
Abstract
Using a first principles approach combined with analysis of heuristic tight-binding models, we examine the connectivity dependence of two forms of quantum interference in single molecules. Based on general arguments, Fano resonances are shown to be insensitive to connectivity, while Mach–Zehnder-type interference features are shown to be connectivity dependent. This behaviour is found to occur in molecular wires containing anthraquinone units, in which the pendant carbonyl groups create Fano resonances, which coexist with multiple-path quantum interference features.
- This article is part of the themed collection: 2017 PCCP HOT Articles