Issue 22, 2017

Vibrational and impedance spectroscopic analyses of semi-interpenetrating polymer networks as solid polymer electrolytes

Abstract

Semi-interpenetrating polymer networks (semi-IPNs) with significant ionic conductivity (10−4 S cm−1 at ambient temperature) were studied by vibrational and impedance spectroscopies coupled with advanced analysis procedures. Vibrational spectroscopy recognized the numbers of free ions, ion pairs, ion–polymers and hydrogen bonds within the solid polymer electrolyte matrices (SPE). Electrochemical impedance spectroscopy (EIS) was used to quantify the bulk resistance and bulk relaxation time. The analyses used discrepancy–complexity plots to assess the number of free parameters properly, and EIS was further analyzed using impedance spectroscopy genetic programming (ISGP). Four compositions of PEO-polyurethane/poly(ethylene glycol) dimethyl ether (PEO-PU/PEGDME) were examined with LiClO4 salt. The polymer electrolyte composition of 30/70 PEO-PU/PEGDME resulted in the lowest relaxation times and the highest ionic conductivity. The best salt concentration was observed at an EO/Li ratio of 30 for the PEO-PU/PEGDME : LiClO4 (30/70) semi-IPN matrix. Several lithium salts of different anions were examined at an EO/Li ratio of 10, and the ionic conductivity achieved varied in the order –N(CF3SO2)2 > –ClO4 > –(CF3SO3) > –I/I3.

Graphical abstract: Vibrational and impedance spectroscopic analyses of semi-interpenetrating polymer networks as solid polymer electrolytes

Supplementary files

Article information

Article type
Paper
Submitted
07 Jan 2017
Accepted
09 May 2017
First published
10 May 2017

Phys. Chem. Chem. Phys., 2017,19, 14615-14624

Vibrational and impedance spectroscopic analyses of semi-interpenetrating polymer networks as solid polymer electrolytes

N. Bar, P. Basak and Y. Tsur, Phys. Chem. Chem. Phys., 2017, 19, 14615 DOI: 10.1039/C7CP00129K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements