Nanoscale controlled Li-insertion reaction induced by scanning electron-beam irradiation in a Li4Ti5O12 electrode material for lithium-ion batteries†
Abstract
The development of a nanoscale battery reaction in an electrode material associated with in situ microscopic observation is significant to an understanding of the solid-state mechanism of a battery reaction. With a Li4Ti5O12 (LTO) crystal as the negative electrode of a Li-ion battery (LIB), we show that a nanoscale-controlled Li-insertion reaction can be produced by electron beam irradiation with scanning transmission electron microscopy (STEM). A selected area in a Li2O-coated thin LTO crystal was irradiated by the electron probe of STEM with a high beam intensity of 2.5 × 107 (electrons per nm2). Electron energy-loss spectroscopy (EELS) revealed that significant changes in the chemical feature occurred only in the high-dose irradiation area in the LTO specimen. The features of Li-K, Ti-L and O-K spectra in that area were completely equal to those of a Li7Ti5O12 (Li-LTO) phase, as an electrochemically Li-inserted LTO phase, in contrast to usual LTO-like spectra in the region surrounding the specimen. For a pristine LTO specimen without Li2O coating, no Li-insertion reaction was observed under the same irradiation conditions. The high-dose electron beam seems to induce the dissociation of Li2O, providing Li ions and electrons, and the rapid and directional growth of a Li-LTO phase along the electron beam in the LTO specimen, forming a nanoscale steep interface with the surrounding LTO phase. The present phenomenon is a new type of electron beam assisted chemical reaction in a solid state, and could have a large impact on the science and technology of battery materials.