Issue 24, 2017

Hierarchically structured composites for ultrafast liquid sensing and smart leak-plugging

Abstract

Conductive polymer composites (CPCs) have been intensively exploited as remarkable liquid sensing materials based on variations in their conductivity under liquid stimuli. However, most advances in liquid sensing CPCs are limited to bulk materials. Due to the slow permeation of liquids into the compact CPCs, sluggish responses are inevitable for most existing CPC-based liquid sensing materials. Here, we developed a new class of liquid sensing materials via a hierarchical structure design. Specifically, a thin CPC layer with a segregated conductive network was coated on porous polyurethane (PU) skeletons by layer-by-layer assembly, forming an elaborately designed hierarchical structure in the prepared CPC@PU composites. With this hierarchical structure, the CPC@PU composites exhibited ultrafast responses (0.05–0.15 s) to solvent stimuli, which are ∼3 orders of magnitude faster than the state-of-the-art composites. After liquid sensing, quick regeneration (within 10 s) could be achieved under hot-air. Accordingly, organic liquid and gas sensors and liquid-sensing electronic skins were fabricated. Furthermore, we prepared smart and fast leak-plugging materials using the CPC@PU composites based on the swelling-induced blocking of micropores in the materials. This structural strategy proposed here opens up exciting avenues towards manufacturing real-time liquid sensing and plugging materials, revealing potential applications in oilfield exploitation, solvent storage/transportation, environmental monitoring, etc.

Graphical abstract: Hierarchically structured composites for ultrafast liquid sensing and smart leak-plugging

Supplementary files

Article information

Article type
Paper
Submitted
10 Apr 2017
Accepted
30 May 2017
First published
30 May 2017

Phys. Chem. Chem. Phys., 2017,19, 16198-16205

Hierarchically structured composites for ultrafast liquid sensing and smart leak-plugging

X. Wu, Y. Han, X. Zhang and C. Lu, Phys. Chem. Chem. Phys., 2017, 19, 16198 DOI: 10.1039/C7CP02293J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements