Does the endohedral borospherene supersalt FLi2@B39 maintain the “super” properties of its subunits?†
Abstract
The behavior of the entirely unique system represented by superalkaline species incorporated into a superhalogen cage has been studied using density functional theory with hybrid functionals and the triple-ξ quality basis set level of theory. The singlet ground state and triplet excited state of an FLi2@B39 borospherene complex as well as its cationic and anionic doublet ground states have been investigated. Only the encapsulation of FLi2+ into B39 in FLi2@B39+ is a thermodynamically unfavorable process. All other systems are stabilized during encapsulation most likely via an unpaired electron delocalization process and electrostatic interaction. The calculations revealed that superhalogen and superalkaline properties inherent in the separated fragments are lost in FLi2@B39 complexes. The applicability of vertically estimated ionization potentials and electron affinities instead of adiabatic ones for description of such systems has been demonstrated.